崔昆朋 特任教授


发布时间:2024-11-15



学习工经历

2010.09—2015.06,中国科学技术大学,国家同步辐射实验室,博士学位 (导师:李良彬教授)

2006.09—2010.07,郑州大学,材料科学与工程学院,学士学位


工作经历

2022.04—至今,中国科学技术大学,化学与材料科学学院,特任教授

2019.04—2022.03,日本北海道大学,化学反应创成研究处点,助理教授

2017.11—2019.03,日本北海道大学,先端生命科学院,博士后(合作导师:Jian Ping Gong教授)

2015.11—2017.11,日本北海道大学,日本学术振兴会外国人研究员(JSPS research fellow, 合作导师:Jian Ping Gong教授)


研究方向

1、高分子薄膜加工

2、高分子结晶

3、高强韧水凝胶结构和性能


联系方式

邮箱:kpcui@ustc.edu.cn


主持项目

1、高分子结构和性能 基金委(国家海外高层次青年人才项目)
2、大压缩范围力学可编程有机硅弹性体超材料设计及构效关系研究 基金委NSAF联合基金(重点)
3、高强韧物理水凝胶多尺度结构形变和破坏机理 基金委(面上)
4、新型显示光学膜和离子交换膜等关键膜材料-课题 中科院建制化平台
5BIPV用聚乙烯醇缩丁醛(PVB)胶片关键技术研究-课题 安徽省联合基金
6、耐高温、耐高压、低损耗聚甲基戊烯电容器薄膜(BOPMP)的研发-课题 安徽省科技创新攻坚计划(重点项目)
7、工信部-子课题
8、光学级超镜面、大尺寸流延辊研发及应用技术-课题 安徽省合肥市科技重大专项“揭榜挂帅”项目
9、中国科学技术大学引进人才科研启动专项经费 中国科学技术大学
10、有机硅超弹性材料结构设计与力学性能模拟研究 中国工程物理研究院
11、高耐热聚合物隔膜关键技术研发 合肥国轩高科动力能源有限公司
12、高性能聚酰亚胺单体设计、合成及应用技术开发项目 东华工程科技股份有限公司
13、汽车级PVB加工-结构-性能关系研究 安徽皖维高新材料股份有限公司
142 PVB胶片结构与性能关系研究 中国科大-皖维PVA新材料联合实验室


近期代表性论文

[1] Yang EJ, Ji RY, Miao JB, Yan Q, Li LB, Guo H* and Cui KP*. Deformation and Fracture Behaviors of Tough Plasticized Poly(vinyl butyral) across Broad Temperature and Strain Rate Ranges. Macromolecules, 2024, 57, 8123−8133
[2] Guo H, Zhu JH, Li CY, Zhao CH, Cui KP*, Li LB*. Strain Rate Dependence of Amorphous Phase Instability in Semicrystalline Polymers: Insights from the Scale of Lamellar Stacks. Macromolecules, 2024, 57, 4081−4094
[3] Chu ZY, He KN, Huang SQ, Zhang WH, Li XY*, and Cui KP*. Investigating Temperature-Dependent Microscopic Deformation in Tough and Self-Healing Hydrogel Using Time-Resolved USAXS. Macromol. Rapid Commun., 2024, 45, 2400327
[4] Liu SH, Cheng SC, Luo Y, Zhu JH, Liu LB, Guo H, Cui KP*, An MF*, Li LB*. A versatile steel belt casting equipment for in situ synchrotron radiation x-ray scattering measurement of polymer films. Rev. Sci. Instrum., 2024, 95, 093904
[5] Xu CL, Guo H, Lv CZ, Chen W, Li LB*, Cui KP*. Structure and dynamics heterogeneity in poly(vinyl acetal)s: The effect of side group length. Polymer, 2024, 295, 126741
[6] Lv CZ, Guo H, Feng SY, Yan Q, Xu CL, Yu WC, Li LB, and Cui KP*, Deformation Mechanism of Amorphous Plasticized Poly(vinyl butyral). Macromolecules, 2023, 56, 2663–2674
[7] Xu TY, Cui KP*, Nie C, Peng F, Cao RK, Liu ZW, Sun H, Li LB*, Bond Orientation-Determined Enthalpic Stress in Polymer Glasses upon Deformation. ACS Macro Letters, 2023, 12, 251-1256
[8] Lv CZ, Guo H,  Yang EJ, Xu CL, Yan Q, Meng LP*, Li LB, and Cui KP*, Multiscale Relaxation Behavior of Amorphous Plasticized Poly(vinyl butyral). Macromolecular Rapid Communications, 2023, 44, 2300226;
[9] Han XQ, Min XY, Wu T, An MF, Meng LP*, Li LB, and Cui KP*, Tuning 3D refractive indices via constrained uniaxial stretch in cellulose triacetate films plasticized with triethyl citrate. Carbohydrate Polymers, 2023, 121188;
[10] Zhu JH, Liu SH, Lu YM, Cheng H, Han XQ, Liu LB, Meng LP, Yu WC, Cui KP*, Li LB*, A versatile biaxial stretching device for in situ synchrotron radiation small- and wide-angle x-ray scattering measurements of polymer films. Rev. Sci. Instrum.,
2023, 94, 023906;
[11] Cui KP, JP Gong* et al., Mechanism of temperature-induced asymmetric swelling and shrinking kinetics in self-healing hydrogels. Proceedings of the National Academy of Sciences, 2022, 119 (36), e2207422119
[12] Cui KP, Gong JP*, How double dynamics affects the large deformation and fracture behaviors of soft materials, Journal of Rheology, 2022, 66 (6), 1093-1111
[13] Nie C, Peng F, Cao R, Cui KP* (co-corresponding author), J Sheng, W Chen, Li LB*, Recent progress in flow‐induced polymer crystallization, Journal of Polymer Science, 2022, 60(23), 3149-3175;
[14] Ye YN, Cui KP* (co-corresponding author) and JP Gong* et al., Molecular mechanism of abnormally large non-softening deformation in a tough hydrogel. Proceedings of the National Academy of Sciences, 2021, 118 (14), e2014694118
[15] Yu C, Cui KP* (co-corresponding author) and Gong JP* et al., Structure Frustration Enables Thermal History-Dependent Responsive Behavior in Self-Healing Hydrogels, Macromolecules, 2021, 54 (21), 9927-9936
[16] Venkata SP#, Cui KP# (co-first author) et al., Constitutive modeling of strain-dependent bond breaking and healing kinetics of chemical Polyampholyte (PA) gel, Soft Matter, 2021, 17 (15), 4161-4169. 
[17] Cui KP, Gong JP, Aggregated structures and their functionalities in hydrogels. Aggregate, 2021, e33. 
[18] Yu C, Guo HL, Cui KP* (co-corresponding author) and Gong JP* et al., Hydrogels as dynamic memory with forgetting ability. Proceedings of the National Academy of Sciences, 2020, 117 (32), 18962-18968
[19] Cui KP, Gong JP* et al, Stress Relaxation and Underlying Structure Evolution in Tough and Self-Healing Hydrogels. ACS Macro Letters, 2020, 9 (11), 1582-1589
[20] Cui KP, Gong JP* et al, Phase Separation Behavior in Tough and Self-Healing Polyampholyte Hydrogels. Macromolecules, 2020, 53 (13), 5116-5126
[21] Venkata SP#, Cui KP# (co-first author) et al., Constitutive modeling of bond breaking and healing kinetics of physical Polyampholyte (PA) gel, Extreme Mechanics Letters, 2020, 43, 101184. 
[22]Cui KP, Gong JP* et al, Effect of structure heterogeneity on mechanical performance of physical polyampholytes hydrogels. Macromolecules, 2019, 52 (19), 7369-7378
[23]Ye YN, Cui KP* (co-corresponding author) and Gong JP* et al., Relaxation Dynamics and Underlying Mechanism of a Thermally Reversible Gel from Symmetric Triblock Copolymer. Macromolecules, 2019, 52 (22), 8651-8661
[24]Cui KP, Ma Z, Tian N, et al. Multiscale and Multistep Ordering of Flow-Induced Nucleation of Polymers. Chemical Review, 2018, 118, 1840−1886. (Front cover, Highly cited paper)
[25]Cui KP, Sun T, Liang X, et al. Multi-scale energy dissipation mechanism in tough and self-healing hydrogels. Physical Review Letters, 121, 185501 (2018)
[26]Cui KP, Sun T, Kurokawa T, et al. Stretching-induced ion complexation in physical polyampholyte hydrogels. Soft Matter, 2016, 12: 8833-8840. 
[27]Cui KP, Liu D, Ji YX, et al. Nonequilibrium nature of flow-induced nucleation in isotactic Polypropylene. Macromolecules, 2015, 48: 694–699
[28]Cui KP, Li LB, et al. Kinetic process of shish formation: from stretched network to stablilized nuclei. Macromolecules, 2015, 48: 5276–5285. 
[29]Cui KP, Meng LP, Ji YX,et al. Extension-induced crystallization of poly(ethylene oxide) bidisperse blends: an entanglement network perspective. Macromolecules, 2014, 47, 677−686.
[30]Cui KP, Liu YP, Meng LP,et al. A novel apparatus combining polymer extrusion processing and x-ray scattering. Polymer Testing, 2014, 33, 40–47. 
[31]Cui KP, Meng LP, Tian Nan,et al. Self-acceleration of nucleation and formation of shish in extension-induced crystallization with strain beyond Fracture, Macromolecules, 2012, 45: 5477−5486. 



上一篇:下一篇: